Salmon, R., & Pizzo, N. (2023). Two-Dimensional Flow on the Sphere. Atmosphere, 14(4), 747.
Pizzo, N., & Salmon, R. (2021). Particle description of the interaction between wave packets and point vortices. Journal of Fluid Mechanics, 925, 35.
Salmon, R. (2018). Entropy budget and coherent structures associated with a spectral closure model of turbulence. Journal of Fluid Mechanics, 857, 806–822.
Salmon, R. (2014). Analogous formulation of electrodynamics and two-dimensional fluid dynamics. Journal of Fluid Mechanics, 761.
Salmon, R. (2013). Coupled systems of two-dimensional turbulence. Journal of Fluid Mechanics, 732.
Salmon, R. (2013). An alternative view of generalized Lagrangian mean theory. Journal of Fluid Mechanics, 719, 165–182.
Salmon, R. (2012). Statistical mechanics and ocean circulation. Communications in Nonlinear Science and Numerical Simulation, 17(5), 2144–2152.
Salmon, R. (2010). The shape of the main thermocline, revisited. Journal of Marine Research, 68(3–4), 541–568.
Salmon, R. (2009). A shallow water model conserving energy and potential enstrophy in the presence of boundaries. Journal of Marine Research, 67(6), 779–814.
Salmon, R. (2009). An Ocean Circulation Model Based on Operator-Splitting, Hamiltonian Brackets, and the Inclusion of Sound Waves. Journal of Physical Oceanography, 39(7), 1615–1633.
Salmon, R. (2007). A general method for conserving energy and potential enstrophy in shallow-water models. Journal of the Atmospheric Sciences, 64(2), 515–531.
Dellar, P. J., & Salmon, R. (2005). Shallow water equations with a complete Coriolis force and topography. Physics of Fluids, 17(10).
Salmon, R. (2005). A general method for conserving quantities related to potential vorticity in numerical models. Nonlinearity, 18(5), R1–R16.
Salmon, R. (2004). Poisson-Bracket approach to the construction of energy- and potential-enstrophy-conserving algorithms for the shallow-water equations. Journal of the Atmospheric Sciences, 61(16), 2016–2036.<2016:pattco>;2
Salmon, R. (2002). Numerical solution of the two-layer shallow water equations with bottom topography. Journal of Marine Research, 60(4), 605–638.
Salmon, R. (1999). Lattice Boltzmann solutions of the three-dimensional planetary geostrophic equations. Journal of Marine Research, 57(6), 847–884.
Salmon, R. (1999). The lattice Boltzmann method as a basis for ocean circulation modeling. Journal of Marine Research, 57(3), 503–535.
Salmon, R. (1998). Linear ocean circulation theory with realistic bathymetry. Journal of Marine Research, 56(4), 833–884.
Salmon, R. (1998). Lectures on geophysical fluid dynamics. Oxford University Press.
Miles, J., & Salmon, R. (1997). On the vorticity of long gravity waves in water of variable depth. Wave Motion, 25(3), 273–274.
Becker, J. M., & Salmon, R. (1997). Eddy formation on a continental slope. Journal of Marine Research, 55(2), 181–200.
Salmon, R. (1996). Large-scale semigeostrophic equations for use in ocean circulation models. Journal of Fluid Mechanics, 318, 85–105.
Salmon, R., & Ford, R. (1995). A Simple-Model of the Joint Effect of Baroclinicity and Relief on Ocean Circulation. Journal of Marine Research, 53(2), 211–230.
Salmon, R. (1994). Generalized 2-Layer Models of Ocean Circulation. Journal of Marine Research, 52(5), 865–908.
Salmon, R., & Smith, L. M. (1994). Hamiltonian Derivation of the Nonhydrostatic Pressure-Coordinate Model. Quarterly Journal of the Royal Meteorological Society, 120(519), 1409–1413.
Bogden, P. S., Davis, R. E., & Salmon, R. (1993). The North-Atlantic Circulation - Combining Simplified Dynamics with Hydrographic Data. Journal of Marine Research, 51(1), 1–52.
Salmon, R. (1992). A 2-Layer Gulf-Stream over a Continental-Slope. Journal of Marine Research, 50(3), 341–365.
Salmon, R., & Hollerbach, R. (1991). Similarity Solutions of the Thermocline Equations. Journal of Marine Research, 49(2), 249–280.
Salmon, R. (1990). The Thermocline as an Internal Boundary-Layer. Journal of Marine Research, 48(3), 437–469.
Griffa, A., & Salmon, R. (1989). Wind-Driven Ocean Circulation and Equilibrium Statistical-Mechanics. Journal of Marine Research, 47(3), 457–492.
Salmon, R., & Talley, L. D. (1989). Generalizations of Arakawa’s Jacobian. Journal of Computational Physics, 83(2), 247–259.
Salmon, R. (1988). Semigeostrophic Theory as a Dirac-Bracket Projection. Journal of Fluid Mechanics, 196, 345–358.
Salmon, R. (1988). Hamiltonian Fluid-Mechanics. Annual Review of Fluid Mechanics, 20, 225–256.
Salmon, R. (1988). Hamilton Principle and the Vorticity Laws for a Relativistic Perfect Fluid. Geophysical and Astrophysical Fluid Dynamics, 43(2), 167–179.
Salmon, R. (1986). A Simplified Linear Ocean Circulation Theory. Journal of Marine Research, 44(4), 695–711.
Provost, C., & Salmon, R. (1986). A Variational Method for Inverting Hydrographic Data. Journal of Marine Research, 44(1), 1–34.
Miles, J., & Salmon, R. (1985). Weakly Dispersive Nonlinear Gravity-Waves. Journal of Fluid Mechanics, 157(AUG), 519–531.
Salmon, R. (1985). New Equations for Nearly Geostrophic Flow. Journal of Fluid Mechanics, 153(APR), 461–477.
Salmon, R. (1983). Practical Use of Hamilton’s Principle. Journal of Fluid Mechanics, 132(JUL), 431–444.
Salmon, R. (1982). Geostrophic turbulence. In A. R. Osborne & P. Malanotte Rizzoli (Eds.), Topics in ocean physics (pp. 30–78). North-Holland.
Salmon, R. (1982). The Shape of the Main Thermocline. Journal of Physical Oceanography, 12(12), 1458–1479.<1458:tsotmt>;2
Carnevale, G. F., Frisch, U., & Salmon, R. (1981). H theorems in statistical fluid dynamics. Journal of Physics A-Mathematical and General, 14(7), 1701–1718.
Salmon, R. (1980). Baroclinic Instability and Geostrophic Turbulence. Geophysical and Astrophysical Fluid Dynamics, 15(3–4), 167–211.
Salmon, R. (1978). Two-layer quasi-geostrophic turbulence in a simple special case. Geophysical and Astrophysical Fluid Dynamics, 10(1), 25–52.
Salmon, R., & Hendershott, M. C. (1976). Large-Scale Air-Sea Interactions with a Simple General Circulation Model. Tellus, 28(3), 228–242.
Salmon, R., Holloway, G., & Hendershott, M. C. (1976). The equilibrium statistical mechanics of simple quasi-geostrophic models. Journal of Fluid Mechanics, 75(JUN25), 691–703.